波音体育-ios/安卓/网址平台app下载

  1. 主页 > 专家团队 >

波音体育在线购彩内旋台风(海上的风有哪些?)

摘要:台风中心是高压还是低压台风中心是低压。台风的形成需要以下几个方面的条件:海面水温在26.5℃以上;距海平面有80米高的一层大气,它们要有60米大气层里,有充沛的水气上升,并且

台风中心是高压还是低压

台风中心是低压。

台风的形成需要以下几个方面的条件:海面水温在26.5℃以上;距海平面有80米高的一层大气,它们要有60米大气层里,有充沛的水气上升,并且大气层结稳定。在台风形成后,由于大量水汽上升,在台风中心附近大量凝结,称雨或云团,从而降低台风中心周围的大气压。当台风中心与周围气压梯度达到最大值时,台风表现得最强。当空气中的扰动增强时,从台风中心最外缘向中心移动的空气,依次经历内旋、外旋和直线运动。当从台风中心最外缘向内旋的空气到达台风中心时,产生一增强的扰动,它被往复交换的空气流所抑制。但是,由于气旋式旋转把它集中到台风中心附近一个小区域。因此,在这里扰动得以增强,这是台风的眼区。在眼区中心,气压下降到最低值,并且这个扰动有时足以使气流逆转,当空气从眼区中心向外旋转时,它处于一种逐渐增强的状态。当空气流经低气压的台风眼区时,它将向右偏转并加强。当空气流经台风中心右半部时,它的旋转力是正的;而当它流经中心左半部时是负的。因此,当空气从中心旋转区向外流时,它在眼区中心左侧产生一高压区,右侧产生一低压区。这样,台风在继续发展过程中,能在其周围低层产生一整体旋转气流。

急!气旋和台风的区别?

简单说:台风眼的下沉气流正是由于气旋中心气压值太低才形成的(局部,是结果),而这一低压中心就是热带洋面上升气流导致的(是整体,是前因)。

具体解释:

台风,是强烈发展的热带气旋,愈靠近热带气旋中心,气压愈低,风力愈大。由于台风眼外围的空气旋转得太厉害,而旋转时造成的离心力,

与向中心旋转吹入的风力互相平衡抵消,而使强风不能再向中心聚合,外面的空气不易进入到台风的中心区内,因此形成台风中心数十公里范围内的无风现象,形成极低的气压中心,导致高空气流向下不断补充,形成中心空气下沉现象。

台风是如何导致天气降雨的,是台风携带的水吗?

一般的台风都会伴随强降雨,这些雨水有一部分是台风从海洋带来的水蒸气形成的,还有一些是高空中云雾里蕴含的大量水分。不过光有水蒸气还不足以形成台风雨,还受到气流的强上升运动以及地形等因素的影响。台风伴随的降雨,其强度和持续时长不一,但它们形成的原理是大致相同的。

台风雨是台风活动带来的降水现象。风中有上升气流的整个涡旋区,都有降水存在,但是以上升运动最强的云墙区降水量最大,螺旋云带中降水量已经减少,有时也形成暴雨。我们可以把台风制雨的原理比作一台工作中的巨型热机。而加工的对象则是工作物质是水,包含水汽、雨滴、冰粒、过冷水滴等。

在台风这空气柱上部约距地面12公里处,空气向地面流出,又有低层空气向内流入;在垂直方向上,这气柱内的空气强烈上升。在上升过程中,大量空气从气压大的低空迅速地上升到气压小的高空,使空气膨胀冷却,空气中的水汽凝成小水滴。当小水滴的质量达到一定程度,就不能漂浮在高空,所以从高空坠下形成降雨。

台风带来的降雨虽然受很多因素影响,从区域看各有不同,但它们有以下大致特征。台风区内水汽充足,上升运动强烈,降水量常常很大,台风到来,日降水量平均在800毫米以上,强度很大,多属阵性。台风登陆常常产生暴雨,少则200~300毫米,多则在1000以上。台风导致的降雨天气虽然时常会带来涝灾,但也确实给陆地补给了很多淡水。

台风的形成机制是什么?

来改了

前言

自然地球有许多的机制、到目前尚不被人类所熟知,本文带领您走一趟台风顶端看气旋之巅,也让您一迥公转顶之膛懊。剖析此机制是应证水平气旋之生成与气凸关系。

一、 加速系

台风形成一定经过日间与夜间的演进、日夜气旋之合作,才得以形成垂直气旋「台风」。日旋与夜旋衔接环绕而成为台风之风形,基础之加速机制为,日间在环之东方加速,夜间在环之西方加速,水平气旋不一定先从日间方或夜间方开始加速,视当时之二阶高度及四阶膨胀程度,决定迫阶启动加速与否。

图面之AC衔接成一环圈,如果是DCAB、则AC与BD各成一环,即有了台风样貌,往往须经过两个日夜才出现双环绕。加速中的气旋明显的会增加厚度、高度,逆向气旋会受反向拆解、明显的感觉他会降低高度并减少厚度,待第二次启动加速时高度才又上升。自动的加速机制,东方上升西方下降,反之西方上升东方则下降,环绕的加速动量始终构成一个台风的样貌。气旋之上升下降基本受腔压影响,压大则升、压降则下。

假设新增一个不搭调的气旋,则很快的受吸附,或因位楚位置是反向而受拆解。

『看似甩出、实则加入』

倾角 、渐进「水平气旋」是台风之基本结构,加速中的部份是正向东西旋绕,高速旋绕之尾端产生甩绳索效应、而呈现「倒L形与L形之」半回旋。 日间之东方半回旋与夜间之西方半回旋,整合成一个圆形环旋绕,此即是台风。单眼、双眼、单旋、多旋等都是物理现象。在东方两个加速中心形成的个别高加速中心、形成的即可能是独立的双环旋绕。

二、 进入夜间之日间相对气旋

进入夜间之气旋(加速气旋之相对扰动气旋),东方日间的加速气旋隔邻,出现一或多个扰动气旋、或扰流;此机制来到夜间时区,1、日间气旋的高端外围,受夜间公转逆势渐进拆解,但气旋样相依然存在;2、隔邻的扰动气旋则与公转逆势结合并开始加速;3、或其一山型云受公转逆势接触起动加速。转到晨间后形成U环,待日间又将东方的气旋重新接触加速,环即完成衔接为台风的样貌。

日间东方外环之一(或多个)一捆云是台风的力源,制造环索的力源,旋绕斜向气旋至远端,产生环旋;一捆云的起始是正向水平气旋,兼制造边缘各垂直圈圈的外缘扰流,从公转势吸进高端无云气流(四阶公转流)、旋绕端也吸入二阶气流,当饱和后排放四阶旋成为四阶外环。虽然风形之东外端(南北轴)几轴看似松散之初始云条,它只行使个别的加速机制,并未往垂直气旋的中心滚进,当甩尾往南及至日夜回圈聚合后,垂直气旋因之(它)形成多环之台风风形。

三、 风条的内径

赤道端二阶往西流云、云山群,往上迫阶时、受日间公转流牵引而往东、载重因素、东端下倾,形成旋绕中的水平气旋,无形赤道之四阶流速度非常快,当二阶往上迫阶后,受快速导引而形成急速气旋,受二阶载重托曳而形成半环。

夜间降低高度的公转逆势,将气旋西方相对的反向扰流,启动加速成为反向的气旋,此若与日间气旋相交,则形成回圈环绕,此时即是三四阶台风。

如果三四阶之气旋速度够快、而又属小云条的话,则二阶有一个相反方向的相对扰动气旋,如果三四阶的气旋量增加、扩充到二阶之时,则形成斜向之大卷云条(一捆绳)、直达地面。或多卷绳也到达地面。每一捆绳的内径约略20-50公里。

快速气旋之发生,有云气旋在增加当量时,呈现载重,然而却因气旋速度而出现轻快浮移,不受载重因素逞现下墬,增加气旋规模显现庞大外观时,於上更形迫阶而增速,於下破阶现象将二个阶混合成为一个阶层。 甩入的风条有三个方位排放,1.走四阶区,2.走二阶区,3.走上四阶与下二阶。台风增量的气旋本体,跨越阶区的范畴,而涵盖了2.3.4阶,本体外风之走向则分别为2阶或4阶,鲜少浓为一个阶层。相同的往西外环其上阶速度往往比下阶慢(受扰)(非绝对值、四面八方之现象及时间位置出现不同的值)。各阶区层之厚度或相加之厚度和即可能为旋轴之圆周。

高端之云气旋绕、排放依时区向量转变,加速相对方、把吸进的云气、旋绕后中和而成为低纬载重云块,高纬区倾角斜向的气旋,称较重水平气旋、一条云,此现象就好像是一捆绳子(一捆云),往外排放的一捆云,纵深幅宽即代表其深度范围;加速端越内围的一捆云条越可能接近地面,台风正中心的第一捆云条、越宽广的云条越是含括至地面,其圆周直径绝不超越14-OR-40公里。加速中的云条(台风眼最圆)下雨机率小,涣散台风眼时下雨大。所以日间正在加速端的东方,下雨机率小;夜间西端正在加速时,下雨机率小,反方则下大雨。(数值为假设)

气轻之台风气旋,飘高、速度快、圆周直径小,不降到地面,只在四阶旋绕,属於高纬台风,有台风样貌,地面感受不到台风的样子。现象有三,1、因载重下雨后,变得乾轻。2、二阶无云加入(无日夜相对之气流向加入)。3、加入公转流之后,在公转流上盘旋并往东快速位移。

台风外甩之环、将范围外的云山切割、疾风拖曳而变得扁平,以致加速中的台风范围内绝不打雷;远端、四阶受阻往东的云山则可能会泄放少数雷电,有雷的地方其下一定有大雨势;论证上:台风之加速环在四阶,次环在三阶,外环在二阶,未为重叠堆垒,加速中的主气旋也为气轻,未加速中的主气旋、高度会下降等等因素,前移台风的风形内并不产生短路泄放雷电。

台风之远外端,不属於台风机制的扰流区,出现堆垒的云山,云山行进相同方向时,雷雨大作,一路洒下滂沱大雨,如果四阶云山与二阶云山为反向行进,重叠堆垒的云山很快错开,则雷雨很快解除。

由上项解析发现,原来台风的风条内径、在反推演绎中即可获知,虽然空磁四阶区之真正厚度,现今并不明朗。

四、 公转加速机制应证

散射状的水平气旋容易下雨,高加速气旋并不下雨、气旋有一边为平整切齐『旋绕方、非为吸入方』。

香港东方的三个四阶载重水平气旋,此气旋生成在北纬22度左右,非在赤道端、故未能成为真正的台风风形,然观看此风形之消消长长,才发觉公转加速之机制。看它降低高度、缩小内径,彷佛是因冷凝而缩小,然而它却是受加速之反向动量、而拆解了部份外围之气旋规模而变小。

上图之加速机制以公转顺逆势驱动、日夜间个别之顺、逆气旋。加速之外围来到另一时区、受反向拆解,形成回往并加入另一扰流加入区,形成新的低四阶,与其下之三、二阶做比较(加压),所出现的雨势将是庞大的。三阶、四阶出现的正位载重水平气旋、称超大雷雨包。阴天在自转域出现的二阶水平气旋,称低阶雷雨包。以上两项都出现狂风大雨,视气旋涵盖面(内径)决定影响地面之程度。

五、 台风拆解之时机与机制

台风加速东端在日间热时区,回旋至西端的一捆云条受旋绕、公转逆势反向拆解,自动降低高度,并与二阶往西之气热(二阶流西)跟随位移,形成往西排放之样相,实则跟随庞大2阶西流继续往西前移,进入夜间时区之台风东方骤减加速力源而降

低高度,脱离加速接触,也受公转逆势带离一些高端的一捆云条之外圈,此时之东端云条亦形消瘦,夜间时区之空腔高度越低,东端之一捆绳也越来越消瘦。『尚未接触「锋」之台风、其东方并不排放或跟随、逆向拆解之样相』。

夜间、此时一捆云甩尾环绕之西端,内环或多环都在无形中增高了高度,是因公转逆势相同向量,并未受吸离与拆解,反而受公转逆势之顺势启动加速,夜间有启动加速之外观样态、与日间加速之样貌相同,略为正南北向量,此时跟随庞大返西向量的风形继续往西。

如果旋绕中的风条形成环绕的时候,将亦形加速环绕,不论日间或夜间一捆云条,或多捆云条正热衷於加速时,将出现一个或多个一捆云的高速环绕圈圈,此类环绕圈独立於甩尾环流之外,自成一格,自成一个或多个环绕个体并存在於整个垂直气旋内的中间。

当旋绕中的气旋无相对应的日环或夜环衔接,即偶数并对始能成环,当东日、西夜气旋相加,却出现奇数气旋之时,将出现中断的另一奇数气旋外甩。但当另一时区到来,又出现另一偶数气旋之时,也因前一气旋外甩、而无法内甩衔接成环,使得此偶数气旋也出现外甩的态样。过度内旋也造成无法衔接成环。

日夜交换不顺环时快速位移, 日夜双半环, 夜半环, 日半环,

日间的气旋加速高端在东方,夜间的气旋加速高端在气旋之西方,而不论在日间或夜间,跟随二三阶返西气流位移的四阶之阶上云条〔四阶之底端〕,继续往西位移,并未因时区位置改变而改变位移向量,但在夜间时区排放云条之速度有因拆解及加速带位(上图左一)而减缓旋绕的样相(修正圆形而换位);夜间的加速动量较日间小,所以台风位移速较日间快,只因日间加速较快而常定滞不动。所以、一般日间的行进位移速较慢。不论日、夜间,正加速中的气旋会定滞,位移速小。

当台风的风形遭遇公转流[锋]之时,垂直气旋东端之外环流,受往东之公转流「锋」拖曳带离、吸离,受庞大往东之当量拖曳往东,垂直气旋将受此「锋」之反向气流渐次拆解、及至解散,台风将很快的消灭。「台风触日间或触夜间之公转流(锋)有不同的结果及现象」。

初期 当日间南北向量之一捆云尾端往东甩尾时、则气旋、台风将灭失;末期四阶台乘坐公转流往东前进,此时之地面已无风。台风各圈圈的交界,气流是超高速的下遂滚风、或上旋风,此种滚风是爱玩雨的孩子所熟知。

六、 921模式

「排放的外环流经公转逆势加速变成气轻「轻载」主气旋」

台风往西排放而出的一捆云条,非垂直气旋环绕的中心区,也非多捆加速环绕的多捆内环区,它是跟随往西排放〔四阶之底端〕的一捆外环流,排放中程遭遇台湾中央山脉的狭长山型而往高纬上升高度,并持续加速旋绕在山型上方,因山型而递增高度的外环,与夜间之公转逆流结合启动加速旋绕,接收持续排放的外环环流、并加入一捆气旋中;西端为大陆来的二阶冷流也急速加入一捆气旋中,持续增加气旋当量之一捆云条,很快的因公转磁势增速而形成庞大的水平气旋,持续增加环绕当量后,并与外环流脱体分离,脱离的外环流继续往西前移,惟水平气旋定滞在中央山脉的西方,继续增加环绕的气旋当量,而更增加气旋规模。

921模式,一捆云绳在加速旋绕中,因速度增加而将倾角旋绕变成水平环绕,持续增加之气旋规模,最大时达到地表与润涧、空磁域、大气壳之间「圆周之直径为25公里」,此时之地面风速约在7级间,〔之后地面往正东方单向之稳定风速(西方之下旋风)约在12级间〕。

台风顶之侧照图;日间东端庞大的公转顺势 对 往东低端往西旋绕排放的云条,因气热与速度因素形成梯次递减,然而在所有的卫星云图中均无此症结关键、以致,照像需要标示方位与时区位置标示。???

常态下东一捆云的上方受日间公转顺势加速,西一捆云受公转西流拖曳往西前进,并拉开东一捆云与西方扰流形成的小气旋之位置。

台风暴风圈的外围,在主气旋之旋绕外围,产生排挤、形成涌浪或者反向气旋,高速的往外扩散,称之为外环流;甩出的外环「涌浪或者反向气旋」高端,在日间、夜间、顺应此气旋方位对照公转之顺逆势,而受启动加速的机会,是可能形成高速气旋或更进一步成为气凸。所以921当期之气流模式方位「高ㄇ」不变下,一再生成水平气旋及气凸,且持续好几天。

台风的外围一捆风条、加速外甩的环流,当接触公转顺逆势而更增加台风的风条时,「对应时区」将由斜向转为正向水平气旋。斜向的一捆云或涌浪云条,变成正位加速的水平气旋,因加速而定滞,定滞后持续卷入、加入、吸入有形无形的气及云,会增加气旋动量的可虑视景。惟气旋所楚时区、方位、高度、进程,重载、轻载、以决定是气旋或为气凸。

台风外环与1.外围夏季形气候、2.受气热而巩高的腔压形成的急速热流、3.无形之气流向4.无形公转流之交会,将产生高端水平滚风,或增速变为水平气旋,是故台风天内的远端外围常有气震、疯狗浪及海啸。以上双向之急速模式又遭遇地形山型、高ㄇ、高刮而出现气凸的时机,将是肯定的。台风气旋主体内因载重、绝不气震地震、诚如雨阴天及大晴天绝不地震。

七、 二阶西流与阶区

二阶西流、是无形快速公转流相对的有型流西。北半球之赤道端为庞大西流往西,在台风风形之北端与南端之二阶,大都受加速中的气旋吸入二阶气流,而其四阶环却往外排放,空中大都呈现反向的四阶与二阶,除非加速中心达到一定规模致使无阶域形成,此机制为有圆形台风眼时期的内环(衔环)。加速中的四阶东西旋,其下方尚有二阶气流云之时,清楚的让我们知道,此即四阶台风,有风形但地面并无风。在远方有急速之二阶往加速中心挺进,其气流速快且是大量的加入时,不论有云气还是气轻、其风速常界於10级风。远端的二阶山型高云、受快速拖曳,将到达加速中心前,大都变成厚形云;也可能在载重行进中、降下大雨而一路缩小其山型云之 外观。

921之气旋加速机制,类同上述现象,在中央山脉加速中的长条气旋,因加速而定滞不位移,并将二阶云气、及一阶之气轻吸入,旋绕加入在四阶气旋中,当时之地面定向风速约为10级;比较台风与921气旋之不同处,其一为载重、另一为气轻。

日间之四阶东流来到夜间时,「高端」受相对逆势切割拖曳往西。

二阶台风气流平移、不与台风气旋主体同步时,1、受加速端吸入,2、受反方外排。所以观看卫星云图时,外排的台风四阶外环,其下之二阶平移气流,有可能是受台风主体吸入所致。厘清此日夜加速方之症结、箴信对气象人是有帮助的。二阶自转域之交换气流、对应四阶公转域气流之阻止或跟随、或中和,比较热高压及冷高压之动向,是笔者尚须研究学习的。

黄道面:是指太阳行经北回与南回的那条线,还是正处在太阳下方的位置;本文中正处在太阳垂直下的地方称为日经。

八、 西方的气压徵候

当区域东方出现台风之加速风墙之时,本地之气压徵候、不外乎两种,1.受阻往东并出现重挤气压、重压、值重气压,日间气热未能随公转东流提早进入夜间降温,以致日间气热重复加热、而凸显气温之急速上升。2.受阻往东的气流明显的加入气旋气域中,并增加气旋当量,出现气流浮移之气压计值变轻。

九、 台风驾临之气旋模式

自地球磁枢机制中发现,四阶高端气旋所楚之时间向位,对应台风气旋在当地位置,出现超大雨或强旋风有自然因果序机;台风之形成由时区向位之磁枢机制、加速区、吸离区、挤压区、加速扰流区,「以上是磁枢机制、是气旋的相对扰流区」。

1.日间气旋东方加速端、日间到当地,2.西方气旋日间到当地,3.夜间气旋西方加速端、夜间到当地,4.东方气旋夜间到当地,5.傍晚扰流区各时区之气旋在当地。综上气旋对时区位置决定、当地感受台风向位之风雨明显不同。

十、 结 语

台风气旋之动量及载重高云下压都使得阶区破阶,然而此破阶是一时的破阶、还是破阶闭合破阶闭合之短暂破阶,连结公转域及自转域不同步阶层之机制,除了可能的南北极磁梳交变外,还是仅只区阶各自为政,自转气域只形热对流,快速公转流只将气热提早送往东方的夜间降温,阶区分隔各自机制,有如冷气机之冷媒管线各司其职,但 破阶与迫阶是否也是平衡机制的一环呢!以过往经验法则,它「无型空域有形阶区」机制之平衡是铁的自然律。虽已发现水平气旋形成关系、是台风、气凸的形成机制,自然率却不为笔者背书,总爱出现新的花招,然其基本模式却已固定。

台风有咩现象?

(一)台风现象 热带气旋是发生于热带洋面上急速地作气旋式旋转的暖心结构。按其产生风力的不同,在世界不同地区有不同的称呼。台湾是以其近中心附近平均最大风速为准,划分为四级:热带性低气压(近中心最大风速小于17.2m/s)、轻度台风(近中心最大风速17.2~32.6m/s)、中度台风(近中心最大风速32.7~50.9m/s)、强烈台风(近中心最大风速51.0m/s以上);习惯上是将轻度台风以上的热带气旋统称为台风。 台风的尺度范围是比较宽的,一般的直径有几百公里;最大的可达2

000公里,最小的为100~200公里。台风的垂直伸展一般可达对流层顶,少数可达平流层底部。台风的垂直尺度与水平尺度之比约为1:50,因此台风是一个扁平的气旋式涡旋。 台风在水平方向上可分为三大部分:螺旋云(雨)带、云墙区、台风眼。台风眼一般呈圆形或椭圆形或呈不规则形状。在眼区之中心,气压最低。眼区的平均直径为45公里,台风眼区为下沉气流,通常是云淡风轻的好天气。在台风眼的外面是一个圆环状的云区,叫云墙区或涡旋区。它由一些高大的对流云组成,其高度一般为15公里以上,宽度约20~30公里。云墙区及其附近区域是产生风、雨以及破坏力最大的地方,若干条螺旋云带从外围一直向内旋向云墙区。螺旋云带上有旺盛的对流运动,它所经过的地方降落阵雨。 在垂直方向,台风可分为三层。从地面到3公里高度为流入层,3~7.6公里是中层,从7.6公里到台风顶是流出层。在流入层,风向有明显的径向(向心)分量,四周空气以螺旋式向中心辐合,把大量水汽自台风外围输入台风内部。流入现象到达云墙区停止,而后气流作螺旋辐合上升。在中层,基本上没有径向风速,主要是围绕中心运动,风向主要为切向风。从低层辐合的暖溼气流,通过中层到达流出层时便向外扩散,即以反气旋方式向外辐散。流出的空气一部分与四周空气混合后下沉到底层,一部分在眼区下沉,组成了台风的垂直环流区。 台风气温愈向中心愈高,这种暖心结构是台风的基本特征。台风气压沿通过中心的轴线呈漏斗状分布。在其外边气压慢慢下降,当接近台风中心时急速下降,在眼区达最低值。在中心地区,水平气压梯度很大,一般可达每公里0.5~100百帕(hPa/km)。 从台风外围向中心,风力增大,但眼区风力反而很弱。一般,一个发展得比较完全的台风,离中心500~600公里处风力可达6级左右;离中心200~300公里处风力可达8级;离中心100~200公里处风力为10级以上。 在台风外围有间歇性小阵雨,越接近中心,雨势越大。台风眼周围是出现大豪雨的地带。在台湾登陆的台风,24小时内降300毫米以上的豪雨是常见的,有些台风甚至可达500~600毫米,因而造成大水灾。 台风的平均生命期为8~9天,有些甚至长达一个月之久。它的生命大部分在海洋上度过,若登陆或移到温带,则是它生命的消灭阶段。因为登陆后,暖溼空气的来源断绝,同时,低层摩擦力很大,造成台风减弱;移到温带,由于中纬度冷空气入侵,破坏了台风的暖心结构,使之变成温带气旋。 台风有再生性,即台风登陆时减弱,但转向出海时能再次加强。

海上的风有哪些?

旋风

旋风是打转转的空气涡旋,是由地面挟带灰尘向空中飞舞的涡旋。这种涡旋正是我们平常看到的旋风,它是空气在流动中造成的一种自然现象,可是风为什么会打转转呢?

旋风

我们知道,当空气围绕地面上像树木、丘陵、建筑物等不平的地方流动时,或者空气和地面发生摩擦时,要急速地改变它的前进方向,于是就会产生随气流一同移动的涡旋,这就刮起了旋风。但是,这种旋风很少,也很小。

旋风形成的最主要原因,是当某个地方被太阳晒得很热时,这里的空气就会膨胀起来,一部分空气被挤得上升,到高空后温度又逐渐降低,开始向四周流动,最后下沉到地面附近。这时,受热地区的空气减少了,气压也降低了,而四周的温度较低,空气密度较大,加上受热的这部分空气从空中落下来,所以空气增多,气压显著加大。这样,空气就要从四周气压高的地方,向中心气压低的地方流来,跟水往低处流e799bee5baa6e58685e5aeb931333431346365一样。但是,由于空气是在地球上流动,而地球又是时刻不停地从西向东旋转,那么空气在流动过程中就要受地球转动的影响,逐渐向右偏去(原来的北风偏转成东北风,南风偏转成西南风,西风偏转成西北风,东风偏转成东南风)。于是从四周吹来的较冷空气,就围绕着受热的低气压区旋转起来,成为一个和钟表时针转动方向相反的空气涡旋,这就形成了旋风。

这种旋风的中心,由于暖空气不断上升,加上四周的空气不断旋转,所以很容易把地面上的尘土、树叶、纸屑等卷到空中,并随空气的流动而旋转飞舞。如果旋风的势力较强,有时会把地面上的一些小动物,如小蛇、小虫等卷到空中去,在尘沙弥漫中随风飘走。

一般小旋风的高度不太大,当它受到地面的摩擦或房屋、树木等的阻挡时,就渐渐消散变成普通的风。

也许有人还会问题:既然地面受热就容易起旋风,那夏天比春天还热,为什么夏天旋风少而春天旋风多呢?这是原因夏天天气虽然很热,但是地面的草木青青,土地湿润,气温相差不大,所以夏天很少刮旋风。可是,在春天,树叶还没有全长出来,草也刚发芽,庄稼地是一片光光的,处处没遮没挡,这就容易晒热,使地面上空气的温度变化较大,就容易刮旋风。

旋风能挟带灰尘、乱纸向空中飞舞,当然也能把地面的热量、水汽等带到空中,所以,它造成了空气的热量、水汽等的垂直混合,使空气中热量和水汽等的垂直分布均匀。但在地面附近旋风很小,垂直交换作用不大,因此在紧贴地面气层中形成了特殊的小气候。

焚风

当气流跨越山脊时,背风面上容易发生一种热而干燥的风,名叫焚风。这种风不像山风那样经常出现,它是在山岭两面气压不同的条件下发生的。

焚风示意图

在山岭的一侧是高气压,另一侧是低气压时,空气会从高压区向低压区移动。在空气移动途中遇山受阻,被迫上升,气压降低,空气膨胀,温度也就随之降低。空气每上升100米,气温就下降0.6℃。当空气上升到一定高度时,水汽遇冷凝结,形成雨雪落下。空气到达山脊附近后,变得稀薄干燥,然后翻过山脊,顺坡下降,空气在下降过程中,重又变得紧密,并出现增温的现象。空气每下降100米,气温就会升高1℃。因此,空气沿着高大的山岭沉降到山麓的时候,气温常会有大幅度的升高。迎风和背风两面的空气,即使高度相同,背风面空气的温度也总是比迎风面的高。每当背风山坡刮炎热干燥的焚风时,迎风山坡却常常下雨或落雪。

焚风的害处很多。它常常使果木和农作物干枯,降低产量,使森林和村镇的火灾蔓延并造成损失。19世纪,阿尔卑斯山北坡几场著名的大火灾,都是发生在焚风盛行时期的。焚风在高山地区可大量融雪,造成上游河谷洪水泛滥;有时能引起雪崩。如果地形适宜,强劲的焚风又可造成局部风灾,刮走山间农舍屋顶,吹倒庄稼,拔起树木,伤害森林,甚至使河流、湖泊水面上的船只发生事故。

焚风有弊,但是它也有利。由于它能加速冬季积雪的溶化,不用等到明年春天,牛羊就可以在户外放牧了。焚风还丰富了当地的热量资源,像罗纳河谷上游瑞士的玉米和葡萄,就是靠了焚风的热量而成熟的;而焚风影响不到的邻近地区,这些庄稼就难以成熟。

内旋台风(海上的风有哪些?)

海陆风

在海滨地区,只要天气晴朗,白天风总是从海上吹向陆地;到夜里,风则从陆地吹向海上。从海上吹向陆地的风,叫做海风;从陆地吹向海上的风,称为陆风。气象上常把两者合称为海陆风。

海陆风形成示意图

海陆风成因示意图

海陆风和季风一样,都是因为海陆分布影响所形成的周期性的风。不过海陆风是以昼夜为周期,而季风的风向却随季节变化,同时海陆风范围也比季风小。那么,海陆风是如何形成的呢?

白天,陆地上空气增温迅速,而海面上气温变化很小。这样,温度低的地方空气冷而下沉,接近海面上的气压就高些;温度高的地方空气轻而上浮,陆地上的气压便低些。陆地上的空气上升到一定高度后,它上空的气压比海面上空气压要高些。因为在下层海面气压高于陆地,在上层陆地气压又高于海洋,而空气总是从气压高的地区流到气压低的地区,所以,就在海陆交界地区出现了范围不大的垂直环流。陆地上空气上升,到达一定高度后,从上空流向海洋;在海洋上空,空气下沉,到达海面后,转而流向陆地。这支在下层从海面流向陆地,方向差不多垂直海岸的风,便是海风。

夜间,情况变得恰恰相反。陆地上,空气很快冷却,气压升高;海面降温比较迟缓(同时深处较温暖的海水和表面降温之后的海水可以交流混合),因此比起陆面来仍要温暖得多,这时海面是相对的低气压区。但到一定高度之后,海面气压又高于陆地。因此,在下层的空气从陆地流向海上,在上层的空气便从海上流向陆地。在这种情况下,整个垂直环流的流动方向,也变得和前面海风里的垂直环流完全相反了。在这个完整的垂直环流的下层,从陆地流向海洋,方向大致垂直海岸的气流,便是陆风。

一般海风比陆风要强。因为白天海陆温差大,加上陆上气层较不稳定,所以有利于海风的发展。而夜间,海陆温差较小,所波及的气层较薄,陆风也就比较弱些。海风前进的速度,最大可达5~6米/秒,陆风一般只有1~2米/秒。滨海一带温差大,海陆风强度也大,随着远离海岸,海陆风便逐渐减弱。

海陆风发展得最强烈的地区,是在温度日变化最大以及昼夜海陆温度差最大的地区。所以,在气温日变化比较大的热带地区,全年都可见到海陆风;中纬地区海陆风较弱,而且大多在夏季才出现;高纬度地区,只有夏季无云的日子里,才可以偶尔见到极弱的海陆风。我国沿海的台湾省和青岛等地,海陆风很明显,尤其是夏半年,海陆温差及气温日变化增大,所以海陆风较强,出现的次数也较多。而冬半年的海陆风就没有夏半年突出,出现机会比较少。

海陆风是在海岸附近,由于陆地与海水热容量的显著差异而产生的一种地方性风系。

白天,陆地表面受太阳辐射增温比海洋快得多,因而陆地上的气温显著比海洋上的气温高。陆地上的空气受热上升,气压下降。这时海洋上的气温相对较低,气压相对较高,气压梯度力的方向是由海洋指向陆地,从而形成由海洋吹向陆地的海风。

日落以后,陆地表面辐射降温比海洋快得多。到了夜间,陆地上的气温比海洋上的气温低,陆地上的气压则比海洋上的气压高。这时气压梯度力的方向与白天相反,由陆地指向海洋,因此便形成了由陆地吹向海洋的陆风。

在较大的湖泊(如洞庭湖、鄱阳湖等)的湖陆交界地区,也会产生与海陆风相似的地方性风系——湖陆风。

这种海陆风或湖陆风是太阳照射的结果。因此,在阴云密布的日子里,由于不存在这种显著的海陆的热力差异,也就没有明显的海陆风。

由于海陆风是地方性的热力差异形成的,它的势力较弱,其水平范围不超过几十千米,垂直高度也在1~2千米以内。在大型天气系统影响时,这种地方性的风系就淹没在势力更强大的大尺度风系之中了。

干热风

在初夏季节,我国一些地区经常会出现一种高温、低湿的风,这就是干热风,也叫“热风”、“火风”、“干旱风”等。它是一种持续时间较短(一般3天左右)的特定的天气现象。

由于各地自然特点不同,干热风成因也不同。每年初夏,我国内陆地区气候炎热,雨水稀少,增温强烈,气压迅速降低,形成一个势力很强的大陆热低压。在这个热低压周围,气压梯度随着气团温度的增加而加大,于是干热的气流就围着热低压旋转起来,形成一股又干又热的风,这就是干热风。强烈的干热风,对当地小麦、棉花、瓜果可造成危害。

内旋台风(海上的风有哪些?)

气候干燥的蒙古和我国河套以西与新疆、甘肃一带,是经常产生大陆热低压的地区。热低压离开源地后,沿途经过干热的戈壁沙漠,会变得更加干热,干热风也变得更强盛。位于欧亚大陆中心的塔里木盆地,气候极端干旱,强烈冷锋越过天山、帕米尔高原后产生的“焚风”,往往引起本地区大范围的干热风发生。

在黄淮平原,干热风形成的主要原因是以该区域的大气干旱为基础。春末夏初,正是北半球太阳直射角最大的季节,同时又是我国北方雨季来临前天气晴朗、少雨的时期。在干燥气团控制下,这里天晴、干燥、风多,地面增温快(平均最高气温可达25~30℃),凝云致雨的机会少,容易形成干热风。这种干热风,对这一带小麦后期的生长发育不利。

在江淮流域,干热风是在太平洋副热带高压西部的西南气流影响下产生的。太平洋副热带高压是一个深厚的暖性高压系统,自地面到高空都是由暖空气组成的。春夏之际,这个高气压停留在江淮流域上空,以后逐渐向北移动。由于在高压区内,风向是顺时针方向吹的,所以在副热带高压的西部,就吹西南风。位于副热带高压偏北部和西部地区,受这股西南风的影响,产生干热风天气。初夏时,北方仍有冷高压不断南下,势力减弱,发生变性;当它与副热带高压合并时,势力又得到加强,使晴好天气继续维持,干热风就更加明显。

在长江中下游平原,梅雨结束后天气晴朗干燥,偏南干热风往往伴随“伏旱”同时出现,对双季早稻(或中稻)抽穗扬花不利。

干热风的影响

干热风对作物的危害,主要由于高温、干旱、强风迫使空气和土壤的蒸发量增大,作物体内的水分消耗很快,从而破坏了叶绿素等色素,阻碍了作物的光合作用和合成过程,使植株很快地由下往上青干。尤其是干热风,常常和干旱一起危害作物。作物根部本来就吸不到应有的水分,而干热风却又从茎叶中把大量的水分攫取走了,因而使作物更快地萎黄枯死。

干热风常发生的初夏时节,正是我国北方小麦灌浆时期,碰上干热风,麦穗会被烤得不能灌浆,提前“枯熟”,麦粒干瘪,粒重下降,导致严重减产。

干热风的危害程度,还与干热风出现前几天的天气状况有关。如雨后骤晴,紧接着出现高温低湿的燥热天气,危害较重。在干热风发生前如稍有降水,对于减轻干热风危害是有利的。从播种时间的早晚来看,晚麦容易受害。所以,农谚说:“早谷晚麦,十年九坏。”从农时来看,小满、芒种是一关,农谚有“小满不满,麦有一险”的说法。就是说,小麦在小满时还没有灌浆乳熟,是容易受到干热风危害的。

季风

季风是大范围盛行的、风向有明显季节变化的风系。随着风向的季节变化,天气和气候也发生明显的季节变化。“季风”一词来源于阿拉伯语“mawsim”,意为季节。中国古称信风,意为这种风的方向总是随着季节而改变,是季节的信使。现在也经常将季风称为信风,如东南信风,西北信风等。

季风是由海陆分布、大气环流、大陆地形等因素造成的,以1年为周期的大范围对流现象。亚洲地区是世界上最著名的季风区,其季风特征主要表现为存在2支主要的季风环流,即冬季盛行东北季风和夏季盛行西南季风,并且它们的转换具有暴发性的突变过程,中间的过渡期较短。一般来说,11月至翌年3月为冬季风时期,6~9月为夏季风时期,4~5月和10月为夏、冬季风转换的过渡时期。但不同地区的季节差异有所不同,因而季风的划分也不完全一致。

季风是大范围盛行的、风向随季节变化显著的风系,和风带一样同属行星尺度的环流系统,它的形成是由冬夏季海洋和陆地温度差异所致。季风在夏季由海洋吹向大陆,在冬季由大陆吹向海洋。

季风活动范围很广,它影响着地球上1/4的面积和1/2人口的生活。西太平洋、南亚、东亚、非洲和澳大利亚北部,都是季风活动明显的地区,尤以印度季风和东亚季风最为显著。中美洲的太平洋沿岸也有小范围季风区,而欧洲和北美洲则没有明显的季风区,只出现一些季风的趋势和季风现象。

冬季,大陆气温比邻近的海洋气温低,大陆上出现冷高压,海洋上出现相应的低压,气流大范围从大陆吹向海洋,形成冬季季风。冬季季风在北半球盛行北风或东北风,尤其是亚洲东部沿岸,北向季风从中纬度一直延伸到赤道地区,这种季风起源于西伯利亚冷高压,它在向南爆发的过程中,其东亚及南亚产生很强的北风和东北风。非洲和孟加拉湾地区也有明显的东北风吹到近赤道地区。东太平洋和南美洲虽有冬季风出现,但不如亚洲地区显著。

夏季,海洋温度相对较低,大陆温度较高,海洋出现高压或原高压加强,大陆出现热低压;这时北半球盛行西南和东南季风,尤以印度洋和南亚地区最显著。西南季风大部分源自南印度洋,在非洲东海岸跨过赤道到达南亚和东亚地区,甚至到达我国华中地区和日本;另一部分东南风主要源自西北太平洋,以南或东南风的形式影响我国东部沿海。

季风形成示意图

夏季风一般经历爆发、活跃、中断和撤退4个阶段。东亚的季风爆发最早,从5月上旬开始,自东南向西北推进,到7月下旬趋于稳定,通常在9月中旬开始回撤,路径与推进时相反,在偏北气流的反击下,自西北向东南节节败退。

季风形成的原因,主要是海陆间热力环流的季节变化。夏季大陆增热比海洋剧烈,气压随高度变化慢于海洋上空,所以到一定高度,就产生从大陆指向海洋的水平气压梯度,空气由大陆指向海洋,海洋上形成高压,大陆形成低压,空气从海洋流向大陆,形成了与高空方向相反气流,构成了夏季的季风环流。在我国为东南季风和西南季风。夏季风特别温暖而湿润。

不过,海陆影响的程度,与纬度和季节都有关系。冬季中、高纬度海陆影响大,陆地的冷高压中心位置在较高的纬度上,海洋上为低压。夏季低纬度海陆影响大,陆地上的热低压中心位置偏南,海洋上的副热带高压的位置向北移动。

当然,行星风带的季节移动,也可以使季风加强或削弱,但不是基本因素。至于季风现象是否明显,则与大陆面积大小、形状和所在纬度位置有关系。大陆面积大,由于海陆间热力差异形成的季节性高、低压就强,气压梯度季节变化也就大,季风也就越明显。北美大陆面积远远小于欧亚大陆,冬季的冷高压和夏季的热低压都不明显,所以季风也不明显。大陆形状呈卧长方形,从西欧进入大陆的温暖气流很难达到大陆东部,所以大陆东部季风明显。北美大陆呈竖长方形,从西岸进入大陆的气流可以到达东部,所以大陆东部也无明显季风。大陆纬度低,无论从海陆热力差异,还是行星风带的季风移动,都有利于季风形成,欧亚大陆的纬度位置达到较低纬度,北美大陆则主要分布在纬度30°以北,所以欧亚大陆季风比北美大陆明显。

台风

台风是产生在热带洋面上的大气涡旋,是深厚的热带天气系统。它一直可伸展到20千米以上的高空,它的水平范围从数百千米到上千千米。

台风

发展成熟的台风,一般由螺旋云带、云墙区和台风眼3部分组成。螺旋云带最外层是层积云,然后是浓积云和积雨云。一条条向内旋入的螺旋云带,是台风系统水汽和热量的输送者。云墙区是在台风中心周围高耸的积雨云,宽度约8~20千米,台风的大风暴雨都出现在云墙区内,最大风速出现在云墙区外侧气压梯度最大的地方。最大的暴雨出现在云墙区内侧积雨云发展最旺盛的地方。台风眼是台风的中心所在,这里盛行下沉气流,天空无云,白天可见阳光晚上可见星光,好似台风的眼睛,又像云墙中的一眼深井。

台风的成因

台风就像一部机器,要使它转动必须有足够的能量。热带洋面上的高温高湿条件,可以提供台风生成发展所需的热能。国内外专家研究得出,海温高于26~27℃是台风形成起码的条件。海温越高,越有利于台风的形成和发展。

台风是不断旋转的大气涡旋,要形成台风低空必须有气旋性的气流辐合,从而使对流运动发展,形成大量的积雨云。在赤道附近海面,由于地转偏向力很小,不利于气旋性气流的形成,所以赤道附近没有台风形成。只有在纬度5°~8°的热带洋面上,才有利于台风的形成。

为使台风这部热机不停地运转,就要使热量保持在台风中心附近不被风吹散。这就要求台风系统中上下升速差要小,即风的垂直切变小,从而保持热量源源不断地供应,促使台风发展加强。

我们知道赤道是一个低压带,那里太阳辐射强,空气受热上升,南北半球的东南信风、东北信风吹向赤道。但是,太阳不总是直射赤道,只在春分、秋分两天直射赤道。春分后太阳直射地球的位置越过赤道慢慢北移,太阳直射的位置,空气最热,上升最强烈,近地面气压最小,这相当于赤道低压带在向北移动(跟着太阳直射地球的位置北移)。南半球的东南信风带也跟着向北半球移动。由于地球自转产生的偏向力,东南信风在北半球变成了西南风,与北半球的东北信风顶着吹,这样一来就可能形成逆时针旋转的空气漩涡。在亚洲东部,这种漩涡多产生在北纬5°~20°的菲律宾以东至关岛的洋面上,这里海水温度高,水汽充沛,具备形成漩涡的条件。在开始形成阶段,漩涡直径仅100千米左右,漩涡越转越大,移到北纬30°时,直径可达600~1000千米,中心的风力也越来越大,可能成为热带风暴或台风。

台风的各种名称

在全球的热带洋面上都有台风生成,但各地对台风的称呼各不相同。发生在北大洋西部和南海上的习惯上称为台风;发生在北太平洋东部和大西洋的称为飓风;发生在印度洋上的称为印度洋风暴,其中发生在孟加拉湾和阿拉伯海的分别称为孟加拉湾风暴和阿拉伯海风暴。

台风发展的各个阶段,由于其强度不同(根据最大风力来划分),名称也各不相同。它们的统称是热带气旋。当热带气旋中心附近最大风力在7级或以下,称为热带低压;当中心附近最达风力达到8~9级时,称为热带风暴;当中心附近最大风力达到10~11级时,称为强热带风暴;当中心附近最大风力达到12线以上时,称为台风。

我国中央气象台和各级气象台在发布台风消息和警报都是按以上的统一标准发布的。

台风的移动路径

台风这个气旋性涡旋,像小朋友玩的陀螺一样,一面不停地旋转,一面向前移动。台风的路径就是指台风整体的移动方向。影响台风移动路径的因素有4种:①台风这个旋转系统的内力作用,总是使台风向北和向西移动;②大范围引导气流的作用,当台风位于副热带高压南侧时,受高压南侧的偏东引导气流作用向西移动,当台风位于副热带高压西侧时则受高压西侧偏南气流的引导而向北移动;③台风与四周天气系统的相互作用,如台风靠近西风槽时,会受槽的吸附作用,然后在槽前西南气流引导下向东北方向移动;④洋面温度的影响,台风有向暖洋面移动的趋势。

虽然有以上4种作用影响台风的移动,但实际上,这4种因素也是在不断变化的,它们之间的相互作用更为复杂多变,使人难以预料。这就是台风路径复杂多变时往往造成预报失败的原因。

飓风

飓风一词源自加勒比海言语的恶魔Hurican,亦有说是玛雅人神话中创世众神的其中一位,就是雷暴与旋风之神Hurakan。而台风一词则源自希腊神话中大地之母盖亚之子Typhon,它是一头长有一百个龙头的魔物,传说其孩子就是可怕的大风。

飓风

大西洋和北太平洋东部地区将强大而深厚(最大风速达32.7米/秒,风力为12级以上)的热带气旋称为飓风。

它也泛指具有狂风和任何热带气旋以及风力达12级的任何大风。

飓风和台风都是指风速达到33米/秒以上的热带气旋,只是因发生的地域不同,才有了不同名称。出现在西北太平洋和我国南海的强烈热带气旋被称为“台风”;发生在大西洋、加勒比海、印度洋和北太平洋东部的则称“飓风”。飓风在一天之内就能释放出惊人的能量。飓风与龙卷风也不能混淆。后者的时间很短暂,属于瞬间爆发,最长也不超过数小时。此外,龙卷风一般是伴随着飓风而产生。龙卷风最大的特征在于它出现时,往往有一个或数个如同“大象鼻子”样的漏斗状云柱,同时伴随狂风暴雨、雷电或冰雹。龙卷风经过水面时,能吸水上升形成水柱,然后同云相接,俗称“龙取水”。经过陆地时,常会卷倒房屋,甚至把人吸卷到空中。

飓风的等级分类

一级,最高持续风速33~42米/秒、74~95米/时;64~82节、119~153千米/时;风暴潮4~5英尺(1英尺=0.3048米)、1.2~1.5米,中心最低气压28.94英寸(1英寸=2.54厘米)汞柱、980毫巴,潜在伤害对建筑物没有实际伤害,但对未固定的房车、灌木和树会造成伤害。一些海岸会遭到洪水,小码头会受损。

典型飓风:飓风艾格尼丝——飓风丹尼——飓风加斯顿——飓风奥菲莉娅

二级,最高持续风速43~49米/秒、96~110米/时;83~95节、154~177千米/时;风暴潮6~8英尺、1.8~2.4米,中心最低气压28.50~28.91英寸汞柱、965~979毫巴,潜在伤害部分房顶材质、门和窗受损,植被可能受损。洪水可能会突破未受保护的泊位使码头和小艇会受到威胁。

典型飓风:飓风鲍勃——飓风邦妮——飓风弗朗西斯——飓风胡安

三级,最高持续风速50~58米/秒、111~130米/时;96~113节、178~209千米/时;风暴潮9~12英尺、2.7~3.7米,中心最低气压27.91~28.47英寸汞柱、945~964毫巴,潜在伤害某些小屋和大楼会受损,某些甚至完全被摧毁。海岸附近的洪水摧毁大小建筑,内陆土地洪水泛滥。

典型飓风:1938年大新英格兰飓风——飓风弗兰——飓风伊西多尔——飓风珍妮

四级,最高持续风速59~69米/秒、131~155米/时;114~135节、210~249千米/时;风暴潮13~18英尺、4.0~5.5米,中心最低气压27.17~27.88英寸汞柱、920~944毫巴潜在伤害小建筑的屋顶被彻底地完全摧毁。靠海附近地区大部分淹没,内陆大范围发洪水。

典型飓风:1900年加尔维斯敦飓风——飓风查理——飓风雨果——飓风艾里斯

五级,最高持续风速≥70米/秒、≥156米/时;≥136节、≥250千米/时;风暴潮≥19英尺、≥5.5米,中心最低气压<27.17英寸汞柱、<920毫巴,潜在伤害大部分建筑物和独立房屋屋顶被完全摧毁,一些房子完全被吹走。洪水导致大范围地区受灾,海岸附近所有建筑物进水,定居者可能需要撤离。

典型飓风:飓风安德鲁——飓风卡米尔——飓风吉尔伯特——1935年劳动节飓风——台风泰培——飓风卡特里娜

产生原因和影响

飓风产生于热带海洋的一个原因是因为温暖的海水是它的动力“燃料”。由此,一些科学家就开始研究是否变暖的地球会带来更强盛的、更具危害性的热带风暴。大多数的气象学家相信地球看起来正在变得越来越热。他们认为二氧化碳和来自大气层的所谓温室气体正在使地球变得越来越暖。研究人员警告说人们必须要认真思考几十年甚至几个世纪后,全球气候变化的问题了。但需要指出的是,一个天气气候事件,比如强烈的飓风或是飓风活跃的季节,并不能说明全球气候已经变暖了。

城市风

城市,尤其是大城市,由于有众多的建筑、人口集中和工厂等热源的影响,造成城市比郊区温度为高。人们把这种城市的增温称为城市热岛效应。我国的许多大中城市,都有明显的城市热岛效应。这种城市热岛效应在大型天气系统,如冷锋、台风影响时就往往被掩盖而不突出。当没有明显的天气系统影响时,这种城市热岛效应就显露出来。由于城市上空较四周温度高,就引起空的对流运动,城市上空的暖空气上升,而在郊区下沉,而郊区较冷的空气又流向城市,补充城市上升的空气。这样就形成了城市与郊区之间的小型局地环流——城市风。

城市风的风速不大,一般在1米/秒左右,地面风向是由郊区吹向城市。这种风速不大吹向市区的城市风,对空气污染会有重要的影响。城市中的污染物(烟尘、杂质及有害气体)随着热空气上升,往往笼罩着城市上空形成穹形尘盖,使上升气流受阻而转变为上空由城市流向郊区的水平气流,引到郊区下沉,便将这些污染物带到郊区的地面附近。而当郊区城市风下沉区内有工厂排出的污染物,便随着城市风一起流回城市中心,使城市的空气更加混浊。

因此,在城市规划时,要研究城市上空风流到郊区的距离,以便使一些有污染的工厂布局在下沉距离之外,不使高度污染的空气流回城市。另一方面建立卫星城也应在城市风环流之外,这样才能避免中心城市与卫星也之间的互相污染。

地理 气旋与反气旋

1、气旋中心气流上升(因中心为低压,四周气流向中心运动,迫使中心气流上升);而反气旋中心气流下沉(因中心形成高压,气流由中心向四周流动)。

内旋台风(海上的风有哪些?)

2、假如空气中含有大量水汽,气旋控制下的地区会出现阴雨天气(因为气旋中心为上升气流,气流在上升过程中气温随海拔高度的上升而下降,水汽饱和,凝结,就会形成云,条件成熟就会形成降水)。

3、反气旋控制下的天气因为中心气流下沉,气流在下沉过程中不易凝结,故不会形成降水,为睛朗天气。

最新动态

回到顶部 pk彩票广告有限公司